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ABSTRACT

We use a block Lanczos algorithm for computing a few of the smallest

eigenvalues and the corresponding eigenvectors of a large symmetric matrix rather

than computing all the eigenvalue-eigenvector pairs. The basic Lanczos algorithm

generates a similar matrix which is block tridiagonal from a given large symmetric

matrix. The size of the generated tridiagonal matrix depends upon the number of

the smallest eigenvalues to be computed. The result is savings in computations and

storage. The block Lanczos algorithm is well-suited for problems involving multiple

eigenvalues.

In this thesis, we develop the block Lanczos algorithm to estimate the

direction-of-arrival (DOA) of a point source based on the observations measured at

a linear array of sensors and compare the performance with that of a single vector

Lanczos algorithm. The results of the computer simulation experiments conducted

with this method are presented and discussed.
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I. INTRODUCTION

It is necessary to estimate the power spectral density (PSD) function in

several signal processing problems. Of particular interest is the estimation of

spectral lines in noise. One related problem is the direction-of-arrival estimation of

point sources based on array measurements. Methods based on subspace estimation

have been proposed in this regard [Ref. 9]. Much of the basic literature on these

methods has been borrowed from functional and numerical analysis [Refs. R. 211.

Determination of the subspaces needs a complete eigendecomposition of the given

data autocorrelation matrix. The general eigendecomposition of an nxn matrix

requires 0(n 3 ) computations. Often we only need to compute a few of either the

smallest or the largest eigenvalues and the corresponding eigenvectors of a large

symmetric autocorrelation matrix rather than all the eigenpairs of the matrix. In

this research, we develop an algorithm for computing a few of the smallest

eigenvalues and the corresponding eigenvectors and apply this to high resolution

spectral estimations problems.

The algorithm we develop is an extension of the method of minimized

iterations due to Lanczos [Ref. 9]. Paige [Ref. 4] experimented with the Lanczos

algorithm and found that a few of the extreme eigenvalues of a tridiagonal matrix

would often converge rapidly to the similar eigenvalue of a real symmetric matrix

R much before the entire set of eigenvalues are computed.

The block Lanczos algorithm is an extension of the basic single vector Lanczos

algorithm. We iterate with a block of vectors rather than with a single vector, and

generate a reduced block tridiagonal matrix that is similar to the original



autocorrelation matrix R. The basic idea is that the eigenvalues of the block

tridiagonal matrix are approximately the same as the extreme eigenvalues of R.

Several researchers have reported the block Lanczos algorithm and its variants, in

particular, Cullum and Willoughby [Ref. 1], Kahan and Parlett [Ref. 6] and Golub

and Underwood [Ref. 4].

The objective of this thesis is to develop a block Lanczos algorithm to extract

a few of the smallest eigenvalues and then estimate the corresponding eigenvectors.

The smallest eigenvalues are said to correspond to the noise subspace of the spectral

or array measurements. The proposed algorithm will be used to estimate the

spectral lines which may represent the direction-of-arrival of point sources in low

signal-to-noise ratio environments. The block Lanczos algorithm will have to be

compared with the single vector case with respect to the spectral line estimation

performance. With these goals in mind, we now proceed to discuss how the thesis

is organized.

In Chapter II we introduce and summarize the single vector Lanczos

algorithm. Complete and selective reorthogonalization of Lanczos vectors is

discussed there. In Chapter III, we describe and develop the block Lanczos

algorithm and present the results of the experiments carried out with a computer

program implementing this algorithm. Also, in this chapter, we compare the

performance of DOA estimation of the block Lanczos algorithm with that of the

single vector Lanczos algorithm. Finally, in the last chapter, we discuss and

summarize the results of the Lanczos method and also make some recommendations

for future work.
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II. SINGLE VECTOR LANCZOS ALGORITHM

The single vector Lanczos algorithm is used to tridiagonalize a real symmetric

matrix R. This algorithm is based on the concepts such as Krylov sequences and

subspaces, orthogonal projections of matrices, and Ritz vectors [Ref. 1]. In this

chapter we describe the general Lanczos recursion and a practical Lanczos

algorithm. Issues related to the reorthogonalization of Lanczos vectors are also

discussed.

A. LANCZOS RECURSION

Given an nxn real symmetrix matrix R and an arbitrary nxl unit norm vector

kI, we can obtain a sequence of vectors defining the n dimensional Krylov subspace

as follows [Ref. 1]

k2 = Rk

k3 = Rk2 = R2k,

ki Rkn_1 = Rn-1kr (2-1)

We can now form the Krylov matrix of rank m as follows

Km = [k, k2 k 3 • . km]

= [k1, Rkl, R2kI, ' , Rm'-lkl] (2-2)
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and the Krylov subspaces Xm, m= 1,2,... ,n, are then defined as

X m(R,k,) = span {k1, Rkl, R2k, • , Rm-lk1}. (2-3)

We now proceed to obtain a tridiagonal matrix which has the same extreme

eigenvalues as the given symmetric matrix R. If the columns of a matrix Q. are

orthonormal, then the matrix

T

Tm= QmRQm (2-4)

is an mxm tridiagonal matrix which is an orthogonal projection of R onto the space

spanned by the columns of Qm" Lanczos [Refs. 1, 9, 14] proposed a recursion to

generate the columns of the matrix Qm = [q, q2 ... qm]. The vectors q1, q2, *, qm

are referred to as Lanczos vectors. Thus, for a given real symmetric matrix R, the

Lanczos recursion produces a tridiagonal matrix T m as a projection of R onto the

corresponding subspace span{Qml, spanned by the Lanczos vectors generated.

Thcse subzpaces are in fact Krylov subspaces. [Ref. 1]

The classical Lanczos recursion for R starts with an nxl initial Lanczos vector

q, which is randomly generated and normalized. Initially we define 0,= 0 and qo- 0.

We then compute ai,Oi.,+ and the Lanczos vectors qi for i=1,2,.• .,m as follows:

oi = qiRqi (2-5)

=ilqi~l = Rqi - aiqi - Oiqi-l (2--6)

4



Oi 1 = qTi+Rqi. (2-7)

The Lanczos matrix Tm is generated by appropriately arranging ai and 1#i,, where

ai are the diagonal elements and /i+1 are the subdiagonal elements of the tridiagonal

matrix, so that

Tm(i,i) = ai  for 1<i<m, (2-8)

and

Tm(i,i+l) = Tm(i+l,i) = ji 1  for 1i<m-1, (2-9)

resulting in

12 a2 /3

/03 a3

Tm= (2-10)

Om am

The vectors aiqi and #?iqi-1 in Eqn(2-6) are the orthogonal projections of vectors

Rqi onto the two most recently generated Lanczos vectors qi and qi-." Thus,

updated Lanczos vector qi~+ is computed by orthogonalizing the vector Rq with

respect to previously computed Lanczos vectors qi and qi-r The classical Lanczos

recursion can be condensed into matrix notation by a group of Lanczos vectors Qm

5



and tI- Lanczos matrix T.. We obtain the following matrix equation

RQm = QmTm + iq T (2-11)

where ei is the unit vector whose jth element is 1 and whose other elements are 0.

Note that, in this recursion, R is never modified. Also, storage is needed only for

the Lanczos vectors qi-, qi and qi+1 , the Lanczos matrix T., and the given matrix

R.

The classical Lanczos procedure attempts to maintain the orthogonality of the

Lanczos vectors. Due to the roundoff and other numerical errors, however,

orthogonality between the Lanczos vectors can only be maintained by incorporating

some kind of explicit reorthogonalization as the Lanczos vectors are computed.

Note that the reorthogonalization of these vectors requires extra storage for keeping

all of the Lanczos vectors as well as additional computations. We discuss the

reorthogonalization in a later section.

B. PRACTICAL LANCZOS ALGORITHM

In this section we focus on a Lanczos algorithm with no explicit

reorthogonalization incorporated. The loss of orthogonality, if it occurs, may result

in spurious eigenvalues. Although the orthogonality of the Lanczos vectors is lost,

some of the eigenvalues of R will still appear as eigenvalues of the Lanczos matrix if

we make the tridiagonal matrix large enough. Since we are generally interested in

only a few of the smallest eigenvalues and their corresponding eigenvectors, the loss

of orthogonality does not critically affect finding approximate eigenvalues and

corresponding eigenvectors of R [Ref. 11. Nevertheless, it is possible to find accurate
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eigenvalues and eigenvectors by using the method in an iterative scheme using no

reorthogonalization at all, even in the face of total loss of orthogonality [Ref. 12].

Now, we present the practical single vector Lanczos algorithm.

To generate the tridiagonal Lanczos matrix Tm we should compute ai and Oi+

which are the diagonal and sub-diagonal elements of the tridiagonal matrix, where

i=1,2,. .,L. Given an nxn real symmetric matrix R, we start with an nxI initial

arbitrary vector q, which is normalized such that lq,1 2=1 as in Eqn(2-1). We now

define an intermediate vector

u1 = Rqj (2-12)

and initialize a%=O and 00=0. The single vector recursion is then carried out for

i=1,2,. • .,m and can be summarized as follows:

oi = qju i  (2-13)

wi = Ui - iqi (2-14)

rwiw (2-15)

qij= wi/ri., (2-16)

T
Oi = qTRq.,1  (2-17)

ui-, = Rqi+j - Oiqi (2-18)
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where ui and w i are the orthonormal projection vectors for the Lanczos vector qi.

Here Eqn(2-13) and Eqn(2-17) use the modified Gram-Schmidt orthogonalization

to compute the coefficients a i and /Oi.1, respectively. If qi is orthogonal to qi-1,

then qi+1 will theoretically be orthogonal to both qi- and qi- This algorithm is

quite popular despite the requirement for small amounts of extra computations

[Ref. 12]. Now the tridiagonal matrix Tm is generated by simply filling it with a i

and Oi for its entries as shown in Eqn(2-10).

1. Eigenvalue Computation
To find the eigenvalues p of the mxm Lanczos matrix Tm, we may use

the bisection method and Sturm sequencing [Ref. 5]. Actually, one could obtain

both eigenvalues and eigenvectors of Tm by using such methods as the QR algorithm

[Ref. 16]. However, since we need only a few of the smallest eigenvalues of Tm, we

choose the bisection method to compute them as detailed in the following.

Given the tridiagonal matrix Tm, we define the characteristic

polynomials p0 (p), p1 (p), " Pin(Ip) as

p0(s) = 1 (2-19)

pj(it) = det(Tm - pI), (2-20)

for j=1,2,.. .,m. Expanding the determinant in Eqn(2-20) yields the recursive

expression [Ref. 5: pp. 305-307]:

pj(P) = (aj - /)pj-(P) - /jPj-2(#), j=2,3,. ,m. (2-21)
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The zeros of the polynomial p.(p) are the eigenvalues of the tridiagonal matrix Tm.

Here we are interested in only a few of the smallest eigenvalues of R. In order to

compute these values we first define a range [x, yJ in which all the desired

eigenvalues lie. We then carry out the following iteration to implement the Sturm

sequencing property. If p(x)p(y) < 0 and x < y, then the iteration

Ix-Yl > (( xI + y)

11= +

y = p if p.(X)Pm(y) < 0 (2-22)

x = A if p.(x)Pm(Y) 0

is guaranteed to converge to a zero of pm(a), i.e., to an eigenvalue of Tm. The value

is the machine unit roundoff error and the limits on the range [x, yj are given by

x = min ai - I0i[I - Ii-1I
i 

(2-23)
y = max ai + O3il + Ai3i-

i

where we have go = fm i = 0. The bisection method computes the eigenvalues with

small relative error, regardless of their magnitude. This is in contrast to the

tridiagonal QR iteration, where the computed eigenvalues can have only small

absolute error.
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2. Eigenvector Computation

Now, we need to compute the eigenvectors of R to complete the

eigenpair estimation problem. There are two techniques to compute the

approximate eigenvectors of R. The first technique uses the Ritz vector xj and the

corresponding algorithm uses the relationship [Ref. 141

Xj = QmZj, j=1,2,. ,s (2-24)

where z3 is one of the eigenvectors of Tm, Qm is the matrix of Lanczos vectors, and
s<m

The second technique to obtain the eigenvectors of R corresponding to

the selected eigenvalues of Tm uses the Rayleigh quotient iteration. The iteration

makes the Rayleigh quotient r(Xk) converge to pi which is one of the smallest

eigenvalues of Tm. The Rayleigh quotient of an eigenvector Xk which minimizes

I(R - rkI)Xk12 is given by

T

rk = r(xk)= xTk (2-25)
XkXk

As r(xk) approaches an eigenvalue pi of T., then the solution to (R - rkl)xk = bk

will be an approximate eigenvector by using the inverse iteration theory where bk is

a vector close to zero [Ref. 141.

We now briefly present the inverse iteration algorithm. First, we pick

an arbitrary unit vector xo; then the iteration proceeds as follows

10



for k = 0,1 .....

r i -x (i)TRx(i), x4 i)Txi) - 1

(2-26)

solve (R - rki) I)Yk 1 = x4i for Yk+1

k8 = Yk+1/lYk+1I2"

If r~i  converges to one of the smallest eigenvalues /i of Tm where i=1,2,. • .,s, then

we stop the iteration and the corresponding vector xki is the required eigenvector

of R.

Having discussed the Lanczos algorithm and the methods to compute the

desired eigenpairs, we now proceed to address some issues related to the

reorthogonalization of the Lanczos vectors.

C. REORTHOGONALIZATION

As mentioned in the previous sections, the Lanczos vectors qj, 2, "'', qm lose

mutual orthogonality as the number of steps m in the algorithm increases. The

Trequirement that QTQm = Im is then destroyed by the roundoff errors and the

algorithm is described as unstable. A few steps later, the matrix of Lanczos vectors

Qm may not even have full rank, i.e., the Lanczos vectors may become linearly

dependent. As a result there is no guarantee that Tm will bear any useful

relationship to R. And the orthogonality among vectors q, q2, ""*, q. disappears.

The ideal Lanczos algorithm should terminate (Om = 0) for some m < n, but in

practice the process goes on forever computing more and more spurious eigenvectors

11



for each correct eigenpair it discovers. [Ref. 14]

Thus, sometimes we need to maintain the orthogonality of the Lanczos vectors

for finding more accurate eigenvalues and eigenvectors of R and to avoid the

computation of any spurious pairs. We now add the reorthogonalization step in the

single vector Lanczos procedure presented in Section A and B of this Chater. There

are two techiques for reorthogonalization, namely, complete reorthogonalization

and selective reorthogonalization. These are discussed in the following.

1. Complete Reorthogonalization

Complete reorthogonalization incorporates a Householder matrix

computation into the Lanczos algorithm for producing Lanczos vectors that are

orthogonal to within the working accuracy. This is effective at maintaining the

stability of the system. The following step is inserted into the Lanczos algorithm

(Eqns(2-13)-(2-18)) after computing a projection vector wi:

W i = Wi - qj(qjwi), for j=i,i-1,. .,2,1 (2-27)

thus wi is explicity orthogonalized against qi and qi-. If a Householder matrix Pi is

determined so that [Po Pl ... Pi]T[w0 W1, " , wi] is upper triangular, then it

follows that the (i+l)st column of [P0 ... Pi] is the desired unit vector. An

example of a complete reorthogonalization Lanczos scheme is summarized below.
T/ T

First, we determine the initial Householder matrix Po = I - v0vo/v0vo so that

P0 wo = e1. From Eqn(2-5) we can then obtain a, = qIRq1 and implement the

following recursion for i=1,2,...-,m-1: [Ref. 5: pp. 334-345]

12



ri = (R - aiI)qi - 3i-qi-j (#oq=O)

w = (Pi- ... Po)ri (2-28)

determine Pi = I - 2V1/ViV i

Piwi = (WI, "'" Wi, #i, O, .,. O)T

qi+l = (Po "" P)ei.l

T

i+1 - qi+Rqi+1 .

In Eqn(2-28) the computed Lanczos vectors qi axe now mutually orthogonal to the

working precision which follows from the roundoff properties of Householder

matrices [Ref. 5]. However, the complete reorthogonalization of Lanczos vectors

requires extra computations and all the computed vectors q, q2 ... qi, w1 w2  wi

need to be stored. It negates any advantage of the Lanczos algorithm.

2. Selective Reorthogonalization

Selective reorthogonalization is computationally more efficient. A small

modification to the exact version of the Lanczos algorithm ensures that the Lanczos

vectors q, q2, q3... maintain the orthogonality. At the Oth step the Lanczos

algorithm (Eqns(2-13) - (2-18)) produces the matrix of Lanczos vectors Qi, the
T

tridiagonal matrix Ti = QTRQi, and the residual vector wi = (RQ i - QT)ei. The

equation to compute the residual vectors RQi = QiTi + wie T can then be rewritten

13



as

T

RQ - QiTj + wiei - Fi, (2-29)

where Fi accounts for the roundoff errors. When the Lanczos vectors lose their

orthogonality we have

QI - QTQ1  ki  (2-30)

where it is required to keep ki 5 k for some k in the interval (nc, 0.01) and c is the

relative precision of the arithmetic.

The loss of orthogonality goes hand in hand with the convergence of a

Ritz pair. Suppose that the symmetric QR algorithm [Ref. 16] is applied to T1 and

renders the computed Ritz values 0,, ..., Oi and a nearly orthogonal matrix of

eigenvectors Zj=[zlZ 2 ,'"*,zi] of Ti. Then the Ritz vectors which are the

approximate eigenvectors of R are given by

Xi = [x1, x2, ... , xi --= QiZi. (2-31)

We can show that the absolute value of the inner product between qi.+ and xj is

I 1IRI2  (2-32)

where the denominator term can be approximated as

#jI Zij I Lv I RXj - OjXj12 (2-33)

14



for j=1, 2, ... , i. The recently updated Lanczos vector qi.1 is forced to have a

unwanted component in the direction of any converged Ritz vector. Consequently,

instead of orthogonalizing qi., against all of the previous Lanczos vectors, we can

achieve the same effect by orthogonalizing it against the converged Ritz vectors

[Ref. 51. A selective reorthogonalization method based on this technique is

discussed in Parlett and Scott [Ref. 15]. In this method, a computed Ritz pair (O,x)

is considered a good approximation if it satisfies

IRx- #x12 Lf 7IRI2  (2-34)

where c is the machine precision constant. After computing qi.1 , it is

orthogonalized against each good Ritz vector [Ref. 5]. Selective reorthogonalization

prevents the computation of many spurious eigenvectors. This means that the extra

computations and storage required in this method are less than those required to

implement the complete reorthogonalization since there are usually fewer Ritz

vectors than Lanczos vectors. When all of the eigenvalues of R are required,

however, then the selective reorthogonalization procedures are too expensive to

implement [Ref. 12].

D. RESULTS

In this section we will discuss the experimental results based on computer

simulation of the single vector Lanczos algorithm for estimating the

direction-of-arrival of point sources.
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1. Experimental Set Up

Consider that we receive signals at a linear array containing M equally-

spaced sensors. The signal is modeled as a sum of I sinusoids, the normalizing

spatial frequencies of which are propotional to their bearings from 0.0 (= 00) to

0.5 (= 900), in additive random noise with fixed variance. The received signal at

the mth sensor location is then given by

1

z(m) = Aicos(2rfim) + n(m) (2-35)
i~j

where Ai is the amplitude of the jth sinusoid, fi is the normalized spatial frequency

of the ith signal which represents the bearing, and n(m) is zero-mean white

Gaussian noise with variance a2. The amplitude of the signal Ai and the noise

variance a2 will determine the signal to noise ratio of the jth signal,

A?

SNR i = 10 log( 2 2 (2-36)

Figure 1 shows the block diagram of the direction-of-arrival estimation

algorithm considered in this work. After measuring the signals received at each

sensor, the sensor output is passed through a bank of bandpass filters. This helps

prefilter the noise over the selected frequency band of frequencies and provides some

initial processing gain [Ref. 22]. The autocorrelation matrix is then computed by

taking data from the outputs of corresponding bandpass filters at each sensor. An

nxn autocorrelation matrix is generated as follows

16



m-l-k

R,,(k) z(m+k)z(m), for 0 5 k < n-1. (2-37)
m=0

We now have computed an nxn autocorrelation matrix of z(m), R,', by

using M data samples. The eigenvectors xi of R, corresponding to the smallest

eigenvalues are computed by using the single vector Lanczos algorithm. The power

spectral density estimates are computed as:

1 2

(/) = , (f(2-38)
XX 1 xijz- z~ej27rf

j=l

where xij are the elements of the jth eigenvector xi.

2. DOA Estimation

A few of the extreme eigenvalues and their corresponding eigenvectors of

a large real symmetric matrix R can be obtained by using the single vector Lanczos

algorithm. Those eigenpairs are the approximate eigenpairs of R. Each eigenvector

has spectral information to determine the bearing of a source relative to an array of

sensors. The physical implementation of a DOA estimation scheme is shown in

Figure 1. The correlator generates an autocorrelation matrix of the received signal.

The Lanczos algorithm and the eigendecomposition produce the noise subspace

eigenvectors that estimate the spatial power spectral density (PSD) function, given

in Eqn(2-38). The PSD function represents the direction-of-arrival of point

sources as spectral peaks. In this thesis we have used three different ways of

estimating the PSD function: the individual eigenvector spectra, the algebraic

17



averaging of a few eigenvectors, and the spectral multiplication of the individual

spectra.

The computer simulation experiment consists of an equally-spaced array

of 100 sensors arranged in a linear fashion. By using a filter bank as shown in

Figure 1, the signals have known temporal frequency with unknown bearings. The

autocorrelation matrix size is chosen to be 25x25. The number of eigenpairs

computed is chosen according to the number of iterations in the Lanczos algorithm.

We have used 5 dB, 0 dB, -5 dB and -10 dB SNR cases for the direction-of-arrival

estimation. The results indicate the ability of the algorithm to determine the

number of targets and bearing resolution for various directions and different SNRs.

In each case we have used the five smallest eigenvalues and their corresponding

eigenvectors for computing the PSD function. (We can, however, choose more

eigenvectors at the expense of more computations.)

We can use eigenvector averaging, which is the algebraic averaging of

the computed eigenvectors corresponding to the smallest eigenvalues of R. It has

improved the performance compared to that of the individual eigenvector spectra.

Further improvement in results, however, can be obtained by spectral multiplication

of the individual eigenvector spectra. The estimate is given by

J
Sxx(f) = "IT S i(1) (2-39)

i=1

where J is a predetermined number (J < m < n).

We now consider several examples to study the estimation performance

of the Lanczos algorithm and the consequent eigenpair computation. Most of the

results use the Ritz vector method with no reorthogonalization. Example 1 is the

18



detection of a single target at 90 for different SNRs. Figure 2 shows the overlayed

individual spectra of the five eigenvectors corresponding to the smallest eigenvalues

at an SNR of 5 dB. Note that the spectrum of each eigenvector has several spurious

peaks, but each eigenvector has a common peak at the true bearing 9 . Figure 3(a)

shows a plot of the PSD function which is the average of 5 eigenvectors. The

averaging improves the estimation performance considerably. However, further

improvement was obtained by using the spectral multiplication as defined in

Eqn(2-39) and the result is shown in Figure 3(b). As can be seen, even though it

has two small spurious peaks, it has greatly improved the nulls and the peak at 90.

In the remainder of the thesis, we use the spectral multiplication method to

compute the PSD function. Figure 4 and 5 show the results at 0 dB and -5 dB SNR

respectively. More spurious peaks are observed as the SNR is lowered. At an SNR

of -10 dB (see Figure 6(a)), several spurious peaks are seen which are almost as

large as the true bearing. Improved performance is obtained as shown in Figure

6(b) by using more eigenvectors (7 eigenvectors) in this case in the spectral

multiplication.

In Example 2 we have 3 targets at 340, 360 and 540 . Notice that two

targets are very closly spaced in bearing. Figure 7(a) is obtained by using the Ritz

vector method and Figure 7(b) is obtained by using the Rayleigh quotient iteration

to compute the eigenvectors at 0 dB. Although the two targets are very closely

spaced, good resolution is clearly achieved and almost no spurious peaks are seen in

both results. Figure 8(a) and Figure 8(b) are obtained by using no

reorthogonalization and with complete reorthogonalization respectively at an SNR

of -5 dB. As mentioned earlier, loss of orthogonality does not affect the results for

a few eigenvectors in the single vector Lanczos procedure. The result of
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reorthogonalization is almost the same as the result of no reorthogonalization.

Resolution is achieved in both cases at -5 dB, but several spurious peaks are

present. Figure 9(a) shows the result using 3 eigenvectors while Figure 9(b)

indicates the performance using 5 eigenvectors at an SNR of -10 dB. Note that

sufficient spectral resolution is not acheived to discriminate the targets located at

340 and 360. A number of spurious peaks are higher than the peak at 360 making it

impossible to accurately determine the number of targets as well as their locations.

The results in this chapter indicate that the eigenvectors found using the

single vector Lanczos algorithm are sufficiently accurate to determine the spectrum.

The spectral multiplication scheme achieves the best spectral estimation

performance. This algorithm provides savings in computations and storage because

it needs to compute only a few of the extreme eigenvalues and eigenvectors of a

large real symmetric matrix. Loss of orthogonality is not critically affected when we

need to find only a few eigenvalues and eigenvectors of a large autocorrelation

matrix.
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III. BLOCK LANCZOS ALGORITHM

In the previous chapter we presented the single vector Lanczos method. The

single vector method can be used to find a few extreme eigenvalues of any given real

symmetric matrix R. However, this method does not determine the multiplicities of

the eigenvalues directly. Besides, it does not determine a complete basis for the

invariant subspace corresponding to any such multiple eigenvalue. Here we consider

an alternative approach which directly determines the multiplicities of the

eigenvalues and the corresponding eigenvectors [Ref. 1].

The method known as the block Lanczos algorithm is an extension of the

Lanczos algorithm in which a block of vectors rather than a single vector is iterated

[Ref. 4]. We produce a block tridiagonal matrix in place of the usual tridiagonal

matrix produced in the single vector Lanczos method. The block Lanczos method

can be used in a manner proposed by Paige [Ref. 101. That is, one can compute a

sequence of estimates of the eigenvalues of the matrix R from the block tridiagonal

matrix.

Several researchers have worked on the block Lanczos algorithm, in particurlar

Kahan and Parlett [Ref. 6], Cullum and Willoughby [Ref 1], and Golub and

Underwood [Ref. 4]. In this chapter we describe the basic idea of the block Lanczos

method, develop the algorithm, present several simulation results, and compare

them with those of the single vector algorithm.
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A. BLOCK LANCZOS METHOD

Given a large real correlation matrix R of size nxn, we can generate a banded

tridiagonal matrix T. of size qsxqs, where qs<n, q is the block size, and s is the

number of the Lanczos blocks. Starting from an initial nxq orthonormal matrix Q1,

the purpose is to compute a sequence of mutually orthonormal nxq matrices Q2, Q3,

Q4, " -", Q. such that the space of vectors spanned by the columns of these matrices

contains the columns of the matrices Q1, RQ1, R2Q1, ..., R-Q 1 , where O<q_. and

1<s<. Note that usually we have ps<<n. The block Lanczos algorithm can be

summarized as follows [Ref. 1]: For i=1,2,...,s, compute

Ai = QT(RQ - QI.IB T) (3-1)

Pi = RQi - QAi - Qj- B T  (3-2)

Qi~lBi~l = Pi (QR factorization of P)" (3-3)

In this procedure, Qi 1 is orthonormal to all previous Q. The purpose of the block

Lanczos algorithm is to find Ai, Bi 1 and Qi.l, where Ai and Bi. 1 are the element

matrices of the desired tridiagonal matrix, and Qj~1 is the (i+l)st orthonormal

Lanczos block. The blocks Q1, for i=1,2,... ,s, form an orthonormal basis of the

Krylov subspace, defined as

s(Q,R) = span { Q,RQ,,R2Qi, ... , Rs-IQj) (3-4)

corresponding to the first block Q1. The matrix Q, defined as a catenation of the
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Lanczos blocks

Q =[Q1 Q2 Q3"' Q] (3--5)

is orthogonal [Ref. 4], i.e., QTQ = I or QT = Q-1. We then generate the banded

tridiagonal matrix T. using Ai and Bi:

TAl B2
B2 A2 BT 0

B3 A3

TS =(3-6)

T0 B s
BS As

The elements Al and Bi are qxq coefficient matrices, so that T. is a qsxqs banded

matrix. The off-diagonal blocks, Bi, are upper triangular matrices and the main

diagonal blocks, A., are symmetric matrices so that Tr itself is a symmetric matrix.

Also, the banded tridiagonal matrix T. can be determined by

Ts = Q TRQ. (3-7)

There are basically two different types of block Lanczos procedures, namely, the

iterative procedure and the noniterative procedure. The noniterative procedure

follows along the lines of the single vector Lanczos procedure. In this method a

sequence of blocks {Q1,Q2 ,... } are generated where the length of the sequence can

be determined by the size of Ts and the amount of storage available. The generated
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Lanczos blocks may or may not be reorthogonalized. The iterative procedure uses

the block recursion to generate the block tridiagonal matrix. First, the relevant

eigenvalues and eigenvectors of these block tridiagonal matrices are computed.

Then the corresponding Ritz vectors are computed and used as updated

approximations to the desired eigenvectors. If convergence has not been achieved in

k iterations (see Step 2 below), more iterations are performed these updated

eigenvectors until the procedure has converged.

The following steps show the basic iterative block Lanczos procedure:

Step 1. For k=1 start with an initial arbitrary nxq block Qk where the

columns of Qk are orthonormal.

Step 2. Compute pk = RQk QkAk using Qk where Ak = (Qk)TRQk and

use the norms of the columns of pk to check for convergence. If

convergence has occured, then stop; otherwise, go to Step 3.

Step 3. Generate a sequence of blocks Qk using the recursion in Eqn(3-2)

and Eqn(3-3) for j=2, 3, ... , s. Use the coefficient matrices A

and B + to define the real symmetric block tridiagonal matrix Tk.

Step 4. Compute the q algebraically smallest eigenvalues of Tk and the

correspoding eigenvectors yk where yk = {l yk, .. , yk}.
k+1

Step 5. Obtain the new Lanczos block Q1  given by

Q k+i Qyk k(-)
Q1  Q

k k k k
where Q = {Q, Q21,.., Q5}. Increment k to k+1 and go to Step 2.

From the above procedure we can generate the block tridiagonal matrix Tr and also
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compute the eigenvectors yk which approximate the eigenvectors of R. As noted,

Step 2 provides a check for the convergence of the procedure.

If it were the case that qs = n, then T. would be similar to R and the

eigenvalues of T. would also be similar to the eigenvalues of R. Particularly, some

of the extreme eigenvalues of T8 would be approximately the same as the

corresponding eigenvalues of R. Generally, because of the numerical properties of

the block Lanczos algorithm, it is not practical to carry the method through to

cumpletion [Ref. 1]. The importance of the algorithm lies in the fact that some of

the smallest (and largest) eigenvalues of T. will closely approximate the

corresponding eigenvalues of R for values of s such that qs << n. This is stated by

the following theorem.

Theorem 3.1 [Ref. 1]. Let A, A2 _ .- < An be the eigenvalues of R and

v1, v2, ... , vn be the corresponding orthonormal eigenvectors. Assume that

Aq<Aq~l. Apply the block Lanczos recursion in Eqns(3-1)-(3-3) to R generating s

blocks and let p, 5 p2 An • • be the eigenvalues of Tr. Suppose that

W- W1 - vTQ (3-9)

is the nxq matrix of projections of the starting block of vectors Q, on the

eigenvectors of R, where V = [v1, v2, v3, ... , Vn] and W1 is a qxq matrix composed

of the first q rows of W. Suppose further that W1 is nonsingular so that Gmin, the

smallest singular value of W,, is greater than zero. Then for k = 1, 2, 3, ..., q, the

eigenvalues of T. satisfy

Ak -5 k 5 Ak + C (3-10)
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where the spread c2 is given by

2 (An -Ak) t an2p
=- 1 + 7 k (3-11)

6-1(-)

and 0 = Cos-lomin, Yk - (Ak - Aq+l)/(Ak - A.), and %-, is the (s-l)th Chebyshev

polynomial of the first kind.

This theorem illustrates the importance of the local gaps I Ak - Aq+i , but

does not show the potential positive effect of the outer loop iteration of an iterative

block Lanczos procedure on reducing the overall effective spread and thereby

improving the convergence rate.

Note that, as we have defined it, the block Lanczos method is not a method for

finding the eigenvalues and the eigenvectors of a symmetric matrix R. Rather, it is

a procedure for finding a block tridiagonal matrix T. which is similar to R. To

produce a complete algorithm for finding the eigenvalues and the eigenvectors, we

need to combine the Lanczos algorithm with a technique for finding the eigenvalues

P k and the eigenvectors Yk of T6 such as the QR algorithm.

Now, we will consider certain properties of the block Lanczos algorithm and

problems associated with its implementation and application.

The computed Lanczos blocks Qi are desired to be mutually orthogonal. In

practice, however, because of the arithmetic errors when Pi is computed, they

rapidly lose orthogonality. Thus, after a few iterations of the block Lanczos

algorithm, the current Qi is no longer orthogonal to the previous Lanczos blocks

Q1, Q2, "" , Qi-r. The subsequent losses in orthogonality between the blocks caused
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by the roundoff errors increase as we increase the number of Lanczos blocks. At

some stage when these losses have accumulated sufficiently, the assumption that

the block tridiagonal Lanczos matrix is the projection of the given matrix R on the

subspaces Q will be false [Ref. 1]. As a result the q smallest eigenvalues of T. may

not approximate the q smallest eigenvalues of R. Thus, it requires costly

reorthogonalization of each Q+, with respect to all the previous Lanczos blocks to

maintain the stability of the algorithm [Ref. 4].

Loss of orthogonality goes hand-in-hand with the convergence of some of the

eigenvalues of T. to the eigenvalues of R. In this case we have two options, stop

the Lanczos iterations as the blocks begin to lose their mutual orthogonality or

reorthogonalize the blocks if more iterations are desired. The difficulty in using the

Lanczos method in this way lies in reliably and efficiently determining at what point

the orthogonality is being lost. In order to reorthogonalize all Lanczos blocks, we

first reorthogonalize the residual matrix Pi with respect to all the previous Lanczos

blocks and compute the next block Qi.1 and the coefficient matrix Bi. 1 such that

Pi=Qi.lBiir This modification preserves the stability of the algorithm but at a

considerable cost because the reorthogonalization process requires a large number of

arithmetic operations. The need for reorthogonalization seems to increase with the

size n of R and the number of blocks that are required to be computed in the

algorithm [Ref. 1].

We now describe how to choose the block size q. It is usually best to choose q

equal to the number of eigenvalues and eigenvectors r that we are attempting to

compute which could be the multiplicity of the smallest eigenvalue. Theorem 3.1

suggests that a good choice for q is one for which the gap between Aq and Aq+i is

fairly large.
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B. ALGORITHM

It is possible to find a few of the extreme eigenvalues and corresponding

eigenvectors of a real symmetric matrix using the block Lanczos algorithm rather

than computing the entire matrix decomposition. Each of these smallest eigenvalues

and the corresponding eigenvector of the autocorrelation matrix for received signals

from a sensor array has the spectral information to estimate the

direction -of-arrival.

The computer simulation experimental set up used is the same as the one shown

in Figure 1. We receive the signals at a linear array containing M equally-spaced

sensors and generate the nxn autocorrelation matrix of these received signals.

1. Reduction

The reduction of the data proceeds as follows. Using the block Lanczos

algorithm we reduce the autocorrelation matrix R into a block tridiagonal matrix

that has the same extreme eigenvalues as R. In this section we will present a

practical algorithm to implement the block Lanczos method.

Given an nxn autocorrelation matrix R, we generate an initial nxq matrix

Q1 which is chosen arbitrarily and orthonormalized. The number of vectors in each

uo'bck, q, is considered to be between 3 and 5 in this study. To begin, we compute

RQ1 and a residual matrix P1 given by

P1 = RQI - Q1A1  (3-15)

where A, is a qxq coefficient matrix chosen so that the Euclidean norm of P is

minimized with respect to all possible choices of A, [Ref. 4]. It can be shown [Ref. 1]
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that IIP 11 is minimized when

A1 = QTRQ,. (3-16)

The qxq matrix A1 forms the first block on the main-diagonal of the block

tridiagonal matrix, T, (see Eqn(3-6)). With this choice for A1, we have

P = (I - QIQ)RQ. (3-17)

That is, P1 is the projection of RQ1 onto the space orthogonal to that spanned by

the columns of Q,. The second Lanczos block of vectors Q2 and a qxq upper

triangular coefficient matrix B2 are then obtained by using the QR factorization

with modified Gram-Schmidt procedure on P,:

Q2B2 = P1. (3-18)

The current Lanczos block Q2 is orthonormal to the previous block Q,. The upper

Ttriangular matrix B 2 and its transposed version B2 form the first elements in the

sub-diagonal and the super-diagonal, respectively, of the block tridiagonal matrix

Ts'

The remaining matrices in the sequence of the Lanczos blocks Q1, Q2, I**,

Q., where s<<n, are computed as follows: For i=2,3,..,s, compute

Ai = QT(RQi - qi-B T)  (3-19)
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Pi = RQT - QiAi - Qi-iB T  (3-20)

Qi+1Bi1 j = Pi (3-21)

where Qj,1 and Bi+1 axe obtained as the QR factorization of the residual matrix Pi.

A modified Gram-Schmidt procedure can be used to reorthgonalize the columns of

Pi. This means that Qi~j is orthonormal to all previous matrices Q1, Q2, " " , Q1.

As we increase the number of the Lanczos blocks, their mutual orthogonality is

preserved because of the built-in QR algorithm to factor the residual matrix Pi.

Consequently, the space spanned by Q1, Q2, " " ", Q contains the columns of the

matrices Q1, RQ1, R2Q1, • , Rs-Q which form the orthonormal basis of the

Krylov subspace. Thus, we do not need to reorthogonalize the Lanczos blocks when

we use the algorithm in Eqns(3-17)-(3-19).

2. Eigendecomposition

We need to compute the eigenvalues of the block tridiagonal matrix T.

which approximate the eigenvalues of an autocorrelation matrix. Then the

eigenvectors of R corresponding to these eigenvalues axe determined by knowing the

matrix of Lanczos blocks.

There are several techniques for computing the eigenvalues and

eigenvectors of a given matrix. The fundamental algebraic eigenproblem is to

determine the eigenvalues pi given the set of qs homogeneous linear equations in qs

unknowns [Ref. 17]

Tsyj = piyj for i=1,2,1 •,qs (3-22)
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where the eigenvectors yi of T. satisfy

Yj [ (3-23)
1, if i =j,

that is, yi are mutually orthonormal vectors. From Eqn(3-22) the characteristic

equation associated with the matrix T. is given by

det(T - I) = 0. (3-24)

Expanding the determinant, we have the polynomial equation

O + ali + + a qs- I S + 0' = 0 (3-25)

where aj are the coefficients of /J and the roots of this polynomial give us the

eigenvalues pi of the T.. Corresponding to any eigenvalue Pi, Eqn(3-22) has at

least one non-trivial solution y. Since the eigenvalues of Tr approximate a few of

the extreme eigenvalues of autocorrelation matrix R, we choose the q smallest

eigenvalues and the corresponding eigenvectors of T. and use the Ritz vector to

compute the eigenvectors of R given by [Ref. 1]

X= QY (3-26)

where X is a group of approximate eigenvectors of R, X=[x, x2 ... xq], Q is a

matrix of Lanczos blocks, and Y is a group of q smallest eigenvectors of T., Y=[Y

Y2 ... YqI. Also, we can use the Rayleigh quotient iteration to find the eigenvectors
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of R related to the eigenvalues of T.. However, this method is slower than using

the Ritz vector because it needs more time to converge for a given eigenvalue.

Now, using the eigenvectors of the autocorrelation matrix R we estimate

the spatial spectrum of the received signals. Each of the eigenvectors contains the

true spectral information as well as some spurious peaks. The direction-of-arrival

of point sources can be estimated by computing the spatial power spectral density of

the eigenvectors of R. The power spectral density estimate for the fh eigenvector

corresponding to one of the smallest eigenvalues of R is computed as follows:

1 2

Si n-i (3-27)):x zjiz-i 
_

i=0 Z=j27rf

where xji are the elements of the j th eigenvector, xi and 0 (f 0.5.

C. SIMULATION RESULTS

Using the block Lanczos algorithm we can selectively compute a few of the

smallest eigenvalues and eigenvectors of an autocorrelation matrix. These

eigenpairs are in the noise subspace and contain the spectral information of the

source bearings from an array of sensors. Thus, we could estimate the spatial

power spectral density for each eigenvector using Eqn(3-27). We have used the

spectral product of several individual PSDs to improve the direction-of-arrival

estimation performance. The advantage in using the multiplicative PSD function

was demonstrated in Chapter 2 for the single vector Lanczos algorithm. The same

advantage holds for the block Lanczos algorithm.
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The computer simulation experiment consists of an equally-spaced linear array

of 100 sensors receiving signals of known temporal frequency from various bearings.

The size of the autocorrelation matrix computed is 25x25. The number of smallest

eigenpairs to be estimated is q, which is the size of the Lanczos block. We choose q

to be 3, 5, or 7 in these examples and used 5 dB, 0 dB, -5 dB and -10 dB

signal-to-noise ratios (SNR).

Example 1 is the detection of a target at 90 for different SNRs. Figure 10 shows

the spectral overlay of 5 eigenvectors corresponding to the smallest eigenvalues at

an SNR of 5 dB. The spectrum of each eigenvector has a common peak at the true

bearing 90. Figure 11(a) and Figure 11(b) show improved DOA estimation where

the former figure illustrates the average of 5 eigenvectors and the latter figure shows

the spectral multiplication of those eigenvectors. As can be seen, the spectral

multiplication technique has greatly improved the nulls and the peak at 90. Thus,

in the remainder of the results, we have used the spectral multiplication method to

compute the PSD function. Figure 12(a) shows the performance at 0 dB using 3

eigenvectors and Figure 12(b) shows the result at an SNR of 0 dB using 5

eigenvectors. Improved performance is obtained by using more eigenvectors. In

Figure 12(a) we have several large spurious peaks around the true peak at 90, but

in Figure 12(b) we have just 2 small spurious peaks and the true bearing is clearly

evident. Figure 13(a) and Figure 13(b) show the results at an SNR of -5 dB using 3

and 5 eigenvectors, respectively. The spurious peaks have increased magnitudes

but the difference between the true peak and the spurious peaks is still large enough

to determine the true bearing. Figure 14(a) and Figure 14(b) show the result at an

SNR of -10 dB. Using 3 eigenvectors (Figure 14(a)), it is hard to determine the

true bearing. Using 5 eigenvectors (Figure 14(b)), the true peak appears to be
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larger than the spurious peaks and we can recognize the true bearing.

In Example 2 we have 3 targets at 340, 360 and 540. Two targets are very

closely spaced in bearing. At 0 dB, the results of two cases, where one has used 5

eigenvectors (Figure 15(a)) and the other 7 eigenvectors (Figure 15(b)), indicate

good performance. There are no spurious peaks and the resolution is clearly

acheived. Figure 16(a) shows the result at -5 dB using 5 eigenvectors. In this

result, the resolution is acheived but one spurious peak is as large as the true peaks.

In Figure 16(b), the result shows improved performance using 7 eigenvectors.

There are no spurious peaks and good spectral resolution is acheived. At -10 dB,

the algorithm cannot separate the two targets located at 340 and 360 when we use 5

eigenvectors (Figure 17(a)). When we use 7 eigenvectors however (Figure 17(b)) it

can separate the two closely located sources. Nevertheless, a number of spurious

peaks are larger in magnitude than the peak at 360 making it impossible to

determine the true bearings accurately.

The results in this chapter show that the eigenvectors computed using the block

Lanczos algorithm can be used to determine the spectrum even in very low SNRs.

Since the block Lanczos method can compute a few of the extreme eigenpairs of a

large symmetric matrix, it is efficient in computations and storage.
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D. COMPARISON

In this section we compare the performance of the block Lanczos algorithm and

the single vector Lanczos algorithm for DOA estimation. In both cases, we chose

the seven smallest eigenvalues and corresponding eigenvectors and use the spectral

multiplication method since this gave the best preformance for both algorithms.

Example 1 is the comparison for detection of two targets at 180 and 450 for

different SNRs. Figure 18(a) shows the result using the single vector Lanczos

algorithm and Figure 18(b) indicates the result using the block Lanczos algorithm at

an SNR of 0 dB. The result of the single vector case has two small spurious peaks;

the block case has one very small spurious peak. In both cases the true bearings are

clearly distinguished from the spurious peaks. Figure 19 shows a comparison of the

results at -5 dB. The performance of the block Lanczos algorithm (Figure 19(b)) is

much better than the single vector case (Figure 19(a)) even though several large

spurious peaks are present. Figure 20(a) is the result at -10 dB using the single

vector Lanczos algorithm and Figure 20(b) is the corresponding result of the block

case. In the single vector case, the spurious peaks are almost the same as the true

peaks and we cannot distinguish the true bearing location. In the block case,

however, the true peaks are slightly larger than the largest spurious peak.

Example 2 is a comparison for detection of four targets at 180, 270, 29 ° , and

45 . Figure 21 shows the performance of the two methods at 0 dB. The resolution

is clearly achieved in both cases. Figure 22 shows the results at -5 dB.

Figure 22(a) shows that the single vector Lanczos algorithm cannot separate the two

closly spaced targets. The block case (Figure 22(b)) shows slightly better resolution

between targets located at 270 and 290. At -10 dB (Figure 23(a) and Figure 23(b))

neither method can separate the two closely spaced in bearings at 270 and 290.
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Also, a spurious peak is produced by both methods.

The block Lanczos algorithm is known to estimate the multiple eigenvalues

better than the single vector case [Ref. 1]. This situation is applicable to the DOA

estimation using noise subspace computation where the noise is white. As observed

in the results of Figures 18 - 23, the spectral estimation performance of the block

Lanczos algorithm is consistently better than the single vector algorithm,

particulary at low SNRs. Also, the block method provided better spectral

resolution than the single vector method in our tests. While more analysis is needed

to validate the simulation results, the overall performance of the block method is

quite encouraging.
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IV. SUMMARY AND CONCLUSIONS

In this thesis we examined the use of the single vector Lanczos method and the

block Lanczos method and its application to spectral analysis and

direction-of-arrival problems.

We computed a few of the extreme eigenvalues and their associated

eigenvectors of a large symmetric matrix using the block Lanczos method. The

eigenvalues and eigenvectors of the Lanczos matrix T. approximate the

corresponding eigenvalues and eigenvectors of the given matrix R. The block

Lanczos algorithm can directly determine the multiplicities of the effective

eigenvalues and the eigenvectors of R. We found that the spectral estimate of the

block Lanczos method is more accurate than the single vector Lanczos method,

particulary at low SNRs. Since we compute only a few of the extreme eigenpairs of

a large autocorrelation matrix, the result of this algorithm is savings in

computations and storage. This algorithm may be applied to any system where one

needs to obtain a rapid decomposition of a large correlation matrix.

Although the results of this thesis are most encouraging, some additional

work still remains to be done. We need to compare the results in computational

speed and accuracy with other eigendecomposition techniques for valdating this

algorithm. Also, we need to analyze the effect of roundoff errors on the eigenpair

estimation of the Lanczos algorithm.
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